

A Framework for Planning in
Continuous-time Stochastic Domains

Reid G. SimmonsDavid J. Musliner
Carnegie Mellon UniversityHoneywell Laboratories

Carnegie Mellon University
Håkan L. S. Younes

Introduction

 Policy generation for complex domains
 Uncertainty in outcome and timing of

actions and events
 Time as a continuous quantity
 Concurrency

 Rich goal formalism
 Achievement, maintenance, prevention
 Deadlines

Motivating Example

 Deliver package from CMU to Honeywell

CMU PIT

Pittsburgh
MSP

Honeywell

Minneapolis

Elements of Uncertainty

 Uncertain duration of flight and taxi ride
 Plane can get full without reservation
 Taxi might not be at airport when

arriving in Minneapolis
 Package can get lost at airports

Modeling Uncertainty

 Associate a delay distribution F(t) with
each action/event a

 F(t) is the cumulative distribution
function for the delay from when a is
enabled until it triggers

driving at airport

arrive

U(20,40)

Pittsburgh Taxi

Concurrency

 Concurrent semi-Markov processes

driving at airport

U(20,40)

Pittsburgh Taxi

at airport moving

arrive

move

return

Exp(1/40)

U(10,20)Minneapolis Taxi

PT driving
MT at airport

PT driving
MT moving

t=0

t=24

MT move

Generalized semi-Markov process

Rich Goal Formalism

 Goals specified as CSL formulae
 φ ::= true | a | φ ∧ φ | ¬φ | Pr≥ θ(ρ)
 ρ ::= φ U≤t φ | ◊≤t φ | □≤t φ

Goal for Motivating Example

 Probability at least 0.9 that the package
reaches Honeywell within 300 minutes
without getting lost on the way
 Pr≥0.9(¬pkg lost U≤300 pkg@Honeywell)

Problem Specification

 Given:
 Complex domain model

 Stochastic discrete event system
 Initial state
 Probabilistic temporally extended goal

 CSL formula

 Wanted:
 Policy satisfying goal formula in initial state

Generate, Test and Debug
[Simmons 88]

Generate initial policy

Test if policy is good

Debug and repair policy

good

badrepeat

Generate

 Ways of generating initial policy
 Generate policy for relaxed problem
 Use existing policy for similar problem
 Start with null policy
 Start with random policy

Not focus of this talk! Generate

Test

Debug

Test

 Use discrete event simulation to
generate sample execution paths

 Use acceptance sampling to verify
probabilistic CSL goal conditions

Generate

Test

Debug

Debug

 Analyze sample paths generated in test
step to find reasons for failure

 Change policy to reflect outcome of
failure analysis

Generate

Test

Debug

More on Test Step

Generate initial policy

Test if policy is good

Debug and repair policy

Test

Error Due to Sampling

 Probability of false negative: ≤α
 Rejecting a good policy

 Probability of false positive: ≤β
 Accepting a bad policy

(1−β)-soundness

Acceptance Sampling

 Hypothesis: Pr≥θ(ρ)

Performance of Test

Actual probability of ρ holding

Pr
ob

ab
ili

ty
 o

f
ac

ce
pt

in
g

Pr
≥

θ
(ρ

)
as

 t
ru

e

θ

1 – α

β

Ideal Performance

Actual probability of ρ holding

Pr
ob

ab
ili

ty
 o

f
ac

ce
pt

in
g

Pr
≥

θ
(ρ

)
as

 t
ru

e

θ

1 – α

β

False negatives

False positives

Realistic Performance

θ – δ θ + δ

Indifference region

Actual probability of ρ holding

Pr
ob

ab
ili

ty
 o

f
ac

ce
pt

in
g

Pr
≥

θ
(ρ

)
as

 t
ru

e

θ

1 – α

β

False negatives

False positives

Sequential
Acceptance Sampling [Wald 45]

 Hypothesis: Pr≥θ(ρ)
True, false,
or another
sample?

Graphical Representation of
Sequential Test

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Graphical Representation of
Sequential Test

 We can find an acceptance line and a
rejection line given θ, δ, α, and β

Reject

Accept

Continue sampling

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Aθ,δ,α,β(n)

Rθ,δ,α,β(n)

Graphical Representation of
Sequential Test

 Reject hypothesis

Reject

Accept

Continue sampling

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Graphical Representation of
Sequential Test

 Accept hypothesis

Reject

Accept

Continue sampling

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Anytime Policy Verification

 Find best acceptance and rejection lines
after each sample in terms of α and β

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Verification Example

 Initial policy for example problem

CPU time (seconds)

Er
ro

r
pr

ob
ab

ili
ty

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12

reject
accept

δ=0.01

More on Debug Step

Generate initial policy

Test if policy is good

Debug and repair policyDebug

Role of Negative Sample Paths

 Negative sample paths provide evidence
on how policy can fail
 “Counter examples”

Generic Repair Procedure

1. Select some state along some
negative sample path

2. Change the action planned for the
selected state

Need heuristics to make informed
state/action choices

Scoring States

 Assign –1 to last state along negative
sample path and propagate backwards

 Add over all negative sample paths

s9 failures1 s5s2

s1 s5 s3 failure

−1−γ−γ2−γ3−γ4

−1−γ−γ2−γ3

s5

s5

Example

 Package gets lost at Minneapolis airport
while waiting for the taxi

 Repair: store package until taxi arrives

Verification of Repaired Policy

CPU time (seconds)

Er
ro

r
pr

ob
ab

ili
ty

δ=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

reject
accept

Comparing Policies

 Use acceptance sampling:
 Pair samples from the verification of two

policies
 Count pairs where policies differ
 Prefer first policy if probability is at least

0.5 of pairs where first policy is better

Summary

 Framework for dealing with complex
stochastic domains

 Efficient sampling-based anytime
verification of policies

 Initial work on debug and repair
heuristics

