A Framework for Planning in

g Continuous-time Stochastic Domains

Hakan L. S. Younes
Carnegie Mellon University

David J. Musliner Reid G. Simmons
Honeywell Laboratories Carnegie Mellon University

&M Introduction

= Policy generation for complex domains

" Uncertainty in outcome and timing of
actions and events

= Time as a continuous quantity
= Concurrency

= Rich goal formalism
= Achievement, maintenance, prevention
" Deadlines

&% Motivating Example

= Deliver package from CMU to Honeywell

Pittsburgh

Honeywell

Minneapolis

&% Elements of Uncertainty

= Uncertain duration of flight and taxi ride
= Plane can get full without reservation

= Taxi might not be at airport when
arriving in Minneapolis

= Package can get lost at airports

&% Modeling Uncertainty

= Associate a delay distribution F(t) with
each action/event a

= F(t) is the cumulative distribution
function for the delay from when a is
enabled until it triggers

arrive

ot ZU, 30
w @

Pittsburgh Taxi

*JK Concurrency

= Concurrent semi-Markov processes

arrive

s @ @

Pittsburgh Taxi move

o,

Minneapolis Taxi

t=0

MT move

return

t=24

Generalized semi-Markov process

*M Rich Goal Formalism

= Goals specified as CSL formulae
=pu=true[a|oU@|-¢]|Pr,qp)
u p o (PUSt(pl OSt(pl DSt(p

&M Goal for Motivating Example

= Probability at least 0.9 that the package
reaches Honeywell within 300 minutes
without getting lost on the way

= Pr., (= pkg lost U3 pkg@Honeywell)

*M Problem Specification

= Given:
= Complex domain model
= Stochastic discrete event system
= Initial state

* Probabilistic temporally extended goal
= CSL formula

= Wanted:
= Policy satisfying goal formula in initial state

Generate, Test and Debug
[Simmons 88]

Generate initial policy

l

repeat l bad

Debug and repair policy

~ Test if policy is good —— ‘

&W Generate

= Ways of generating initial policy
= Generate policy for relaxed problem
= Use existing policy for similar problem
= Start with null policy
= Start with random policy

Not focus of this talk! Generate

&M Test

= Use discrete event simulation to
generate sample execution paths

= Use acceptance sampling to verify
probabilistic CSL goal conditions

Test

w Debug

= Analyze sample paths generated in test
step to find reasons for failure

= Change policy to reflect outcome of
failure analysis

Debug

*AM More on Test Step

Generate initial policy

l

policy is good

.

l

Debug and repair policy

/’
\\

&W Error Due to Sampling

= Probability of false negative: <a
= Rejecting a good policy

= Probability of false positive: <3
= Accepting a bad policy

(1—[)-soundness

*M Acceptance Sampling
= Hypothesis: Pr.,(p)

*M Performance of Test

2

5 1-—a
Q g
8:5

O iS

©

Y= (©
o/‘\
=52
__v

. —_— @
a N

© A

Ka B
o

o

0
Actual probability of p holding

ﬁW Ideal Performance

> %

[

Q5

O = .

S 5 False negatives
0p)

S 2

PR

8 N

© A

O

S p-

al

W@

False positives 5) probability of p holding

ﬁ%« Realistic Performance

o 7

= 1 -0

Qg

S 2 .

Q 5 False negatives
0]

S 2

52

— a) —

'_a ;_/\|

© A . .

9 B- Indifference region

| -

M

06-3 0 0+5

False positives 5) probability of p holding

Sequential
w Acceptance Sampling [Wald 45]

= Hypothesis: Pr.,(p)

True, false,
or another

Graphical Representation of
iw Sequential Test

Number of
positive samples

Number of samples

Graphical Representation of
ﬁ% Sequential Test

= We can find an acceptance line and a
rejection line given 6, o, a, and 3

Ae,es,a,s(n)
V
Continue sampling Re50,0(N)
A

Number of samples

Number of
positive samples

Graphical Representation of
*W Sequential Test

= Reject hypothesis

-
=

Number of samples

Number of
positive samples

Graphical Representation of
*W Sequential Test

= Accept hypothesis

-
e

Number of samples

Number of
positive samples

&W Anytime Policy Verification

" Find best acceptance and rejection lines
after each sample in terms of a and [3

Number of
positive samples

Number of samples

im Verification Example

= Tnitial policy for example problem

©
N

o
w

Error probability

— reject
— accept

6=0.01

CPU time (seconds)

0.12

*W More on Debug Step

Generate initial policy

l

+ Test if policy is good

.

l

And repair policy

/’
\\

&W Role of Negative Sample Paths

= Negative sample paths provide evidence
on how policy can falil

= “"Counter examples”

&W Generic Repair Procedure

1. Select some state along some
negative sample path

>. Change the action planned for the
selected state

Need heuristics to make informed
state/action choices

*M Scoring States

= Assign —1 to last state along negative
sample path and propagate backwards

= Add over all negative sample paths

-y -y -y -1

-y

_y2 _y _1

-y

&% Example

= Package gets lost at Minneapolis airport
while waiting for the taxi

= Repair: store package until taxi arrives

*M Verification of Repaired Policy

0.5 — reject
— accept
>~
= 0.4
3
0.3
o 5=0.01
a
. 0.2
@)
| -
| -
L 0.1

0 " " " " " " " 1 1
0O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

CPU time (seconds)

&M Comparing Policies

= Use acceptance sampling:

= Pair samples from the verification of two
policies

= Count pairs where policies differ

= Prefer first policy if probability is at least
0.5 of pairs where first policy is better

w Summary

= Framework for dealing with complex
stochastic domains

= Ffficient sampling-based anytime
verification of policies

= Tnitial work on debug and repair
heuristics

