Probabilistic Plan Verification through Acceptance Sampling

Håkan L. S. Younes Carnegie Mellon University David J. Musliner Honeywell Laboratories

Introduction

- Probabilistic extension to CIRCA
- Efficient plan verification algorithm
 - Monte Carlo simulation
 - Acceptance sampling
- Guaranteed error bounds

Planning via Model Checking

World Model

States...

World Model

States + events = environment

World Model

A plan maps states to actions

Sample Execution Paths

Plan Safety

- Two parameters
 - Failure probability threshold: θ
 - Maximum execution time: t_{max}
- A plan is safe if the probability of reaching a failure state within t_{max} time units is at most θ

Safety Over Sample Execution Paths

• Given $t_{max} = 200$:

Safe!

Safety Over Sample Execution Paths

• Given $t_{max} = 200$:

Not safe!

(safe if
$$t_{max} < 185$$
)

Verifying Plan Safety

- Symbolic Methods
 - Pro: Exact solution
 - Con: Works only for restricted class of models
- Sampling
 - Pro: Works for any model that can be simulated
 - Con: Uncertainty in correctness of solution

Our Approach

- Use simulation to generate sample execution paths
- Use sequential acceptance sampling to verify plan safety

Error Bounds

- Probability of false negative: $\leq \alpha$
 - We say that a plan is not safe when it is
- Probability of false positive: $\leq \beta$
 - We say that a plan is safe when it is not

Acceptance Sampling

- Test hypothesis $Pr_{\leq \theta}(X)$
- In our case
 - is the failure probability threshold
 - X is the proposition that a failure state is reached within the time limit

Sequential Acceptance Sampling

• Test hypothesis $Pr_{<\theta}(X)$

Performance of Test

Actual failure probability of plan

Ideal Performance

Actual failure probability of plan

Actual Performance

Actual failure probability of plan

• We can find an acceptance line and a rejection line given θ , δ , α , and β

Accept hypothesis

Reject hypothesis

Example

• Verify plan with $\theta = 0.05$, $\delta = 0.01$, $\alpha = \beta$

Example

• Verify plan with θ =0.05, δ =0.01, α = β =0.05, t_{max} =200

Simulator

Performance

Summary

- Probabilistic extension to CIRCA
 - Allows for plans with non-zero failure probability
- Efficient plan verification algorithm based on acceptance sampling
- Guaranteed error bounds
- Easy to trade efficiency for accuracy

Future Work

- Sensitivity analysis
- Using verification result to guide plan generation
- "Generalized semi-Markov Decision Processes"