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Abstract

We introduce the generalized semi-Markov decision pro-
cess (GSMDP) as an extension of continuous-time MDPs
and semi-Markov decision processes (SMDPs) for modeling
stochastic decision processes with asynchronous events and
actions. Using phase-type distributions and uniformization,
we show how an arbitrary GSMDP can be approximated by
a discrete-time MDP, which can then be solved using exist-
ing MDP techniques. The techniques we present can also be
seen as an alternative approach for solving SMDPs, and we
demonstrate that the introduction of phases allows us to gen-
erate higher quality policies than those obtained by standard
SMDP solution techniques.

Introduction

water for tea while simultaneously toasting bread, the fact
that the bread pops out of the toaster first does not mean that
we have to start over with the tea. Intuitively, a GSMDP can
be viewed as the composition of asynchronous SMDPs.

In order to solve a GSMDP, we propose an approxima-
tion scheme that transforms an arbitrary GSMDP into a
continuous-time MDP. Each non-exponential delay distribu-
tion in the GSMDP is approximated by a continugimase-
type distribution(Neuts 198). This yields a continuous-
time MDP, which in turn can be transformed into a discrete-
time MDP using a technique calledhiformization(Jensen
1953. Consequently, by using our proposed approxima-
tion scheme, we can approximately solve any GSMDP us-
ing standard MDP solution techniques. We will show
that phase-type distributions are a practical tool for solving
GSMDPs and SMDPs, and that our approach can produce

We are interested in modeling and solving stochastic deci- policies of higher quality for SMDPs than standard tech-

sion processes with asynchronous events and actions, wheré,qes, because the introduction of phases indirectly allows
the delay from when an event or action is enabled until it ;55 take into account the time spent in a state.

triggers can be governed by an arbitrary positive distribu-
tion. While each of the aspects of stochastic decision pro-

cesses listed above have been individually addressed in re-

search on decision theoretic planning, no existing approach
deals with all aspects simultaneously.

Guestrin, Koller, & Par(2002 show how factored MDPs
can be used to handle concurrent actions, but only for sets
of actions executed in synchrony. Continuous-time MDPs
(Howard 1960 can be used to model asynchronous sys-
tems, but are restricted to events and actions with expo-
nential delay distributions. Semi-Markov decision processes
(SMDPs) Howard 1971 lift the restriction on delay distri-
butions, but cannot model asynchrony.

We therefore introduce thgeneralizedsemi-Markov de-
cision process (GSMDP), based on the GSMP model of
discrete event system&lkynn 1989, as a model for asyn-
chronous stochastic decision processes. A GSMDP, unlike
an SMDP, can remember if an event enabled in the current
state has been continuously enabled in previous states with-
out triggering. This is key in modeling asynchronous pro-
cesses, which typically involve events that race to trigger
first in a state, but the event that triggers first does not neces-
sarily disable the competing events. For example, if we boil

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.
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Generalized Semi-Markov Decision Processes

The generalized semi-Markov process (GSMP), first intro-
duced byMatthes (1962, is an established formalism in
queuing theory for modeling continuous-time stochastic dis-
crete event system&(ynn 1989. We add a decision di-
mension to the formalism by distinguishing a subset of the
events as controllable and adding rewards, thereby obtaining
the generalized semi-Markalecisionprocess (GSMDP).

A Model of Stochastic Discrete Event Systems

Consider a computer that can be in one of two states labeled
up and—up. Imagine an eventrash, that can cause a tran-
sition at a random point in time from the state to the-up
state, with the delay being governed by some positive dis-
tribution G. For example, ifG is the uniform distribution
U(0,1), then the time a computer remains up before crash-
ing is uniformly distributed in the intervdD, 1). A system
consisting of a single such computer can be modeled as a
semi-Markov process. Figufga)shows the state transition
diagrams for two identical processes modeling two comput-
ers running asynchronously.

Now, assume the two computers are connected to each
other in a network. If we view the network as a single



stochastic process, we get the state transition diagram in Fig- Actions, Policies, and Rewards

ure 1(b). Note that for continuous delay distributions, the  Gjyen a GSMP with event set, we identify a setd
probability is zero that two events trigger at exactly the same r of controllable events, cactions The remaining events

time, so there is no direct transition from staig A up- to

are calledexogenous eventéctions differ from exogenous

state~up; A ~upy. The resulting process is, in general, N0 gyents in that they can be disabled at will in a state, while
longer a semi-Markov process. To see why, consider the 5, exogenous eventalways remains enabled in a stat#

scenario in which all events havel&0, 1) delay distribu-
tion and afte0.2 time units thecrash; event triggers in state
up; A upg, causing a transition to stateip; A ups. Note
that crashs, which is enabled in the new state, has already
been enabled fdr.2 time units, as it was enabled in the pre-
vious state without triggering. Consequently, the delay dis-
tribution for up, is notU (0, 1) at this point, but/(0,0.8).

In general, the delay distribution of an event at a particu-
lar point in time can depend on the entire execution history,

e € FE,. For a given stata, apolicy 7 picks the action in

the set of potentially enabled actiods) £/, to be enabled in

s, or a special action., representing idleness and meaning
that only exogenous events should be enabled e allow

the action choice to depend not only on the current state, but
on the entire execution history up to the current choice point
including the time spent in the current state. Thus, a policy
is a mapping from partial execution paths and non-negative

o . real numbers to actions.
and this history dependence cannot be captured by a semi-

In addition to actions, we need rewards to fully specify

Markov process without augmenting the state space. How- 5 GSMDP, We assume a traditional reward structure with a
ever, the composite process is, without modifications to the lump sum rewardk(s, e, s') associated with the transition

state space, g@eneralizedsemi-Markov process (GSMP).

A GSMP consists of a set of stat8snd a set of events.

At any point in time, the process occupies a state S in
which a subseF, of the events are enabled. With each event
e is associated a distributiof., governing the time until

e triggers if it remains enabled, and a next-state probability
distributionp. (s’|s). The enabled events race to trigger first,
and the event that triggers causes a transition to a state

S according to the next-state probability distribution for the
triggering event. A GSMP is equivalent to a continuous-time
Markov chain if all delay distributions are exponential.

To formally define the semantics of a GSMP, we asso-
ciate a real-valued clock, with each event that indicates
the time remaining untit is scheduled to occur. The pro-
cess starts in some initial statewith eventsE, enabled.
For each enabled eveate E;, we sample a trigger time
according to the distributiod:. and setc. to the sampled
value. Lete* be the event inE, with the smallest clock
value, i.e.e® = argmin.cp, c.. The evene* becomes the
triggering event ins. Whene* triggers afterc.- time units
in s, we sample a next staté according top.-(s’|s) and
update each clock, for e € E, as follows:c, = ¢, — ce»
if e € E, \ {e*}, otherwisec, is sampled fronG.. In other

from states to s’ caused by the triggering of eveatand a
continuous reward rat€ s, a) associated with actiombeing
enabled ins. Since policies can switch actions at arbitrary
time points, reward rates can vary over time in a given state.

For a fixed policyr, we define the discounted value of an
execution patlr of lengthn (possibly infinite) by

n
vh(o) = Z e—oTi (eatik(si, €i; Sit1)
=0

oty
+ / e (s, m(o<i,t)) dt> ,
0

whereT, = 0 and7; = Z;;E tj fori > 0, ando<; is the
prefix of o up to and including state;. The parameted is
thediscount ratgand can be interpreted as the rate of a ter-
mination event with exponential delay distributididward
1960. We now define the expected infinite-horizon dis-
counted reward fofr, given that execution starts in state

at time0, by
va(s) = EJ[vg(0)]: 1)
Here,E7[] denotes the expectation with respect to the prob-

words, events that remain enabled without triggering are not ability measure induced by policy over the set of execu-

rescheduled in’, while the triggering event and newly en-

tion paths starting in state The objective is to find a policy

abled events are. The specified procedure is repeated with™ Maximizing the expectation irl). We propose to do so

s = s andec. = ¢, solong asF; # 0.

Before we discuss actions, policies, and rewards for
GSMDPs, we need to introduce the concept oégacution
path An execution patlr for a GSMP is a sequence

to,eo t1,e1 ta,e2
g=8) ——> 81 —> S — ...
with s; € S, e; € E;,, andt; > 0 being the sojourn time in
states; before event; triggers a transition to statg, ;. An
execution path is finite if a statg along the path is absorb-
ing (i.e. E;, = (), in which case we set = oo (e; is un-

by first approximating the GSMDP with a continuous-time
MDP using phase-type distributions.

Continuous Phase-Type Distributions

The memoryless property of the exponential distribution
plays a key role in the analytical tractability of continuous-
time Markov chains and MDP<rlang(1917) was the first
to consider a generalization of the exponential distribution
that preserves much of its analytic tractability. The Erlang
distribution introduces: sequentialphases with the time

defined). The length of an execution path equals the number spent in phasé being exponentially distributed with rake

of state transitions along the path, which can be infinite. An
execution path for a GSMP up to statecontains sufficient
information to characterize the future execution behavior of
the process.
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A stochastic process with Erlang distributed sojourn times is
Markovian if phase is included in state descriptions.

The Erlang distribution is a special case of the class of
continuousphase-type distributionéNeuts 1981 A ran-
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(a) Two asynchronous processes.

Figure 1: State transition diagrams for stochastic processes modeling a network of computers. The rightmost diagram includes

(b) Composite system.

\_\crash2
N

.

\

(c) Composite system with phase
transitions.

additional states to record the phase of the events. The first digit represents the plraske, cind the second digit the phase
of crashs. A dash (“—") means that the event associated with the phase is disabled in the state.

dom variable associated with a continuous phase-type distri-
bution of ordem represents the time to absorption inan
state Markov chain and has the cumulative distribution func-
tion 1 —aeT’e, where ther-dimensional row vecta is the
initial distribution of the Markov chainT is itsn x n in-
finitesimal generator matrix, aredis ann-dimensional col-
umn vector of ones.

There exist numerous techniques for approximating a
general distributionG with a continuous phase-type dis-
tribution PH. The most straightforward technique is the
method of momentsvhere the objective is to find andT
such that the firsk moments ofG and PH match. Theith
moment of a distributioi is defined ag;; = F[X'], where
X is arandom variable with distributiad. Two useful con-
cepts are theneanof a distribution ;1) and thecoefficient
of variation (cv? = p/p? — 1). Note thatev? = 1 for the
exponential distribution.

When using the method of moments, it is desirable to
match as many moments 6f as possible, but we will typ-
ically need more phases to match more moments. More

ONG>

(1-p)A1

@

(b)

Figure 2: (a) Two-phase Coxian distribution; (lHphase
generalized Erlang distribution.

VN2 +4 —4n - cv?)/(2(n—1)(cv?+1)),and\ = (1—p+
np)/p1 (Sauer & Chandy 197%arie 198(Q. For example,

a uniform distribution/ (0,1) (11 = 1/2 andcv® = 1/3)

can be approximated by a three-phase generalized Erlang
distribution withp = 1 and\ = 6.

More recently,Osogami & Harchol-Balte(2003 have
presented a closed-form solution for matching the first three
moments of any positive distribution using an Erlang distri-
bution followed by a two-phase Coxian distribution. Later

phases means a larger state space, so there is a tradeoff bein this paper, we compare the quality of policies obtained

tween accuracy and complexity of the approximate model.
We can match a single moment using an exponential dis-
tribution with ratel/u, but this typically yields a poor ap-
proximation ofG. A better approximation is obtained by
matching the second moment as well. Eowith cv? >
1/2, this can be accomplished by using a two-phase Cox-
ian distribution (Figure2(a)) with parameters\; = 2/u4,
Ao = 1/(u1-cv?), andp = 1/(2-cv?) (Marie 1980Q. For ex-
ample, a Weibull distributiomV (1, 1/2) with scale parame-
ter 1 and shape parametef2 (4 = 2 andcv? = 5) can be
approximated by a two-phase Coxian distribution & 1,
Ao = 1/10, andp = 1/10). If W (1,1/2) is the delay dis-
tribution for bothcrash; and crash, in Figure 1(b), then
Figure1(c) is the Markov chain approximating the original
GSMP obtained by approximating each delay distribution
with a phase-type distribution.
If cv? < 1/2, we match the first two moments by us-
ing a generalized Erlang distribution (Figutéb)) with pa-
rametersn = [1/cv?], p 1—@2n-cv?+n—-2-
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by matching one, two, and three moments of each non-
exponential distribution in a model. Better policies are gen-
erally obtained by increasing the number of matching mo-
ments, but at the cost of larger state spaces.

Solution Method

To solve a GSMDP, we first convert it into a discrete-time
MDP, which can be solved using standard techniques such
as value iteration. The resulting policy is then translated into
a policy for the GSMDP.

From GSMDP to Discrete-Time MDP

We note that if all events of a GSMDP are Markovian (i.e.
have exponential delay distribution) then the GSMDP is
simply a continuous-time MDP. By using phase-type distri-
butions, we can replace each non-Markovian event in the
GSMDP with one or more Markovian events, thereby ob-
taining a continuous-time MDP that approximates the orig-
inal GSMDP. The continuous-time MDP can be turned into



GSMDP Continuous-Time Discrete-Time
S.E. A, E, MDP MDP
Ge;pe(s'|s) 574, Qa SIA, P,

k(s,e,s'),c(s,a), k(s,a,s),c(s,a),a r(s,a),y
l bl i

phase-type distributions uniformization

Figure 3: From GSMDP to discrete-time MDP.

a discrete-time MDP using uniformization, described be-
low. The complete process of transforming a GSMDP into a
discrete-time MDP, detailed below, is outlined in Fig@re

rates for the events factored infp,. The matrices).. and

Q, for eacha € A, together with the expected transition
rewardsk(s,a,s’) = Zee(E/\A/)uE; k(s,e,s")Ae/Aq and
reward rateg:(s,a) (reward rates are independent of phase
and remain unmodified), constitute a continuous-time MDP
with action spaced U {a} and state spac&’ defined by
the state variable¥ and phase variables for each non-
Markovian GSMDP event € E.

The obtained continuous-time MDP approximates the
original GSMDP, and can be solved by first transforming
it into a discrete-time MDP usingniformization This tech-
nigue, introduced byensen(1953 as a technique for ana-
lyzing continuous-time Markov chains and implicitly used
by Howard (1960 for solving continuous-time MDPs, al-

We assume a factored representation of the state spacejows us to use regular solution methods for discrete-time

with state variable§’, and associate an enabling condition
¢. with each event € FE such thats = ¢, iff e € E;
forall s € S. We also assume that (s'|s) is implicitly
represented by an effect formudgf. for eache € E, for
example using the effect formalism describedRiptanen
(2003. Thus, a GSMDP event is represented by a triple
(be, G, effe).

For each non-Markovian eventwith delay distribution
G., we find a phase-type distribution of order approxi-
matingG.. We add a phase variabdg to V for each event
e with n, > 1 and replace: with one or more Markovian
events. For example, if we match two moments, we get a
phase-type distribution defined in terms:af, p., A{, and
A5 (A5 = Afif ne > 2). If n, > 2 we add the event
(pe N se € [1,n — 2], Ezp(A1),8. — Se + 1). The fol-
lowing events are added for all valuesrof

(pe N Se =0, Ezp(peA]), S — 1)

(¢e Nse =0, Ezp((1 — pe)AT), effe A se < 0)
(pe N Se = ne — 1, Exp(AS), effe A se < 0)

We associate the transition rewakds, e, s’) with the last
two events and zero transition reward with the other events,
which represent pure phase transitions.

An evente = (¢., Exp()\.), effe) by itself represents a
continuous-time Markov chain having an infinitesimal gen-
erator matrix@. with elements

0 if 7 b~ e
dij = { Pe(J]1)Ae ifi =¢candi#j
_(1 _pe(ili)))‘e if 4 ): ¢ andi = j

wherep,(s'|s) is the next-state probability distribution in-
duced byeff.. A set of asynchronous eventsrepresents a
continuous-time Markov chain witp = 3 ., Q., and
we cally . A theexit rateof £.

Let £’ be the set of events obtained from the original set
of eventsE for the GSMDP through the translation pro-
cess described above, and I8t C E’ be the events de-
rived from the original GSMDP evert. The setA’ =
{¢’ € El|le € A} represents all Markovian events associ-
ated with GSMDP actions. We compute infinitesimal gen-
erator matrices), = ZQGE,\A, Q. for the idle actionu .

andQ, = Qoo + > .5 Q. for each actioru € A, and
we define the exit rate, of an action as the sum of exit
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MDPs, such as value iteration, to solve continuous-time
MDPs. Puterman(1994) gives an excellent description of
the uniformization process, to which we refer the reader
for details. In brief, we choose a uniformization constant
q > MaXqecAufa. },ics —45;- We derive transition prob-
ability matricesP, = I + Q,/q for the discrete-time
MDP, where! is the identity matrix of the same dimen-
sion as@,. The expected discounted reward between de-
cision epochs for the discrete-time MDP becom@sa) =

> ves Pa(s|8)k(s, a,8')+c(s,a)/(a+Aq), wherepq (s']s)

is an entry inP, and),, is the exit rate for, as defined above.
Finally, we derive a discount facter= ¢/(q + «).

Policy Execution

The execution history of a GSMDP can be represented by
a set of real-valued variables, one for each everd E
representing the timehas been continuously enabled with-
out triggering. The phases we introduce when approximat-
ing a GSMDP with a continuous-time MDP can be thought
of as a randomized discretization of the time events have
remained enabled. For example, approximatihgvith an
n-phase Erlang distribution with parameterand \ repre-
sents a discretization of the tim& has been enabled into

n random-length intervals. The length of each interval is a
random variable with distributiowzp(X). A policy for the
continuous-time MDP with phase transitions is therefore ap-
proximately a mapping from states and the times events have
been enabled to actions for the original GSMDP.

Phase transitions are not part of the original model, so we
have to simulate them when executing the policy obtained
for the approximate model. When a GSMDP event or ac-
tion e becomes enabled during execution, we sample a first
phase transition timg for the phase-type distribution used
to approximates,.. If e remains enabled for; time units
without triggering, we increment the phase associated with
e and sample a second phase transition tignd his contin-
ues untile triggers or is disabled, in which case the phase is
reset to zero, or we reach the last phase, in which case the
phase does not change untitriggers or is disabled. The
action choice can change every time a simulated phase tran-
sition occurs, although phase transitions do not change the
actual state of the process. This allows us to take the time
we have spent in a state into account when selecting which



action to enable. We will see in the next section that this
will permit us to obtain better policies than if we switched
the enabled action only at actual state transitions.

Empirical Evaluation

We have implemented a basic GSMDP planner based on
the transformation procedure outlined in Figuse Our
implementation uses multi-terminal BDDs (MTBDDs, also
known as ADDs) Eujita, McGeer, & Yang 1997to repre-
sent matrices and vectors. The discrete-time MDPs that re-
sult from the transformation are solved using value iteration,
essentially using the same approachagyet al. (1999.

Our first test case is a variation of Howard'’s “the Fore-
man’s Dilemma” Howard 1960, where we have a machine
that can be workingsp), failed (s1), or serviced §;). A
failure event with delay distributioty is enabled insg and
causes a transition tg. Once insy, the repair time for the
machine has distributio@zp(1/100). The foreman can at
any time insg choose to enable a service action with de-
lay distribution Ezp(10). If this action triggers before the
failure event, the system enterswhere the machine is be-
ing serviced with service time distributioBzp(1). Given
reward rates:(sg) = 1, ¢(s1) = 0, ande(sz) = 1/2, in-
dependent of action choice, and no transition rewards, the
problem is to produce a service policy that maximizes ex-
pected infinite-horizon discounted rewardsin

We can model this problem as an SMDP, noting that the
probability of the service action triggering before the failure
eventispoy = 1 — [ 10e~00¢=") F(t)dt (whereF (t) is
the cumulative distribution function far) if we enable the
service action aftety time units ins;. We can solve the
SMDP using the techniques described Hgward (1977,
but then we can choose to enable the actiogyionly im-
mediately {, = 0) or not at all {;, = oo). Alternatively,
we can express the expected rewardmas a function ot
and use numerical solution techniques to find the value for
to that maximizes the expected reward. Depending on the
shape off'(t), both of these approaches may require numer-
ical integration over semi-infinite intervals.

Figure4 plots the expected reward as a percentage of the
optimal expected reward for policies obtained using stan-
dard SMDP solution techniques as well as our proposed
technique for approximating a (G)SMDP with an MDP us-
ing phase-type distributions. The optimal value and the
value for the SMDP solution were computed using MAT-
LAB, while the other values were computed by simulating
execution of the policy generated by our GSMDP planner

of the policy obtained by matching a single momentbis
almost identical to that of the SMDP solution. This policy is
also restricted to either enabling the action immediately or
nor at all insy. Due to the approximation af, the perfor-
mance is slightly worse around the point where the optimal
SMDP policy changes. We can see that by increasing the
number of moments that are matched, we can increase the
quality of the policy. Note the number of phases varies with
x for U(5,x), but is constant fofV/(1.6z, 4.5), which ex-
plains why the curves in the right graph are smoother than
in the left. The only exception is for lower values ®fin

the right graph. In this case, the phase-type distribution we
obtain underestimates the probability that failure occurs at
a very early stage, so the enabling of the action comes later
than needed to perform well. In general, however, matching
more moments gives us better policies, mainly because the
phases that are introduced allow us to take into account the
fact thatG is not memoryless, and so delay the enabling of
the action insy accordingly.

Our second test case is a system administration problem
based on the computer network system introduced earlier in
this paper (cfGuestrin, Koller, & Par2002. To make it a
decision problem, we add a reboot action for each machine
m;, which can be enabled if; is not up. The reward rate
for a state is equal to the number of machines that are up.
The delay distributions for the reboot actions are all set to
U(0,1), while Ezp(1) was chosen for the crash events.

Figure5 plots the expected discounted value of the pol-
icy (« —log0.95) obtained by our GSMDP planner
when matching between one and three moments of non-
exponential delay distributions. We see that by matching
two or three moments, we can obtain a policy that performs
noticeably better than the policy obtain by matching only a
single moment. By matching a single moment, we can select
to enable a reboot action based only on which machines are
currently not up, and the resulting policy reboots before
m; if ¢ < j. In contrast, the policy obtained when match-
ing two or three moments keeps a reboot action enabled if it
is in a phase other than zero, because it is then expected to
trigger soon. While the first test case illustrated that phases
can result in better policies by delaying the enabling of an
action in a state, this test case illustrates that phases can help
by keeping an action enabled if it has already been enabled
for some time.

By matching more moments, we increase the accuracy of
the approximation, but we also increase the state space. In
terms of planning time, a larger state space means a solution
will take longer to obtain. Matching more moments typi-

and taking the average value over 5000 samples. We usedcally also results in a larger uniformization constant, which

a = —log0.95 as the discount factor. The two graphs
are for different choices of the failure time distributi¢h
(U (5, ) for left graph andV (1.6, 4.5) for right).

We can see that the SMDP solution is well below the opti-
mal solution because it has to enable the action either imme-
diately, or not at all, ins. For small values af, the optimal
SMDP policy is to enable the action ig, but asr increases
so does the expected failure time, so for largétris better

translates to a slower convergence for value iteration. Thus,
as one can expect, better policies are obtained at the price of
longer solution times. For the system administration domain
with n machines|S|is2", (n+1)2", and(1.5n+1)2" when
matching one, two, and three moments, respectively. The
uniformization constant ia + 1, n + 5, and approximately

n+ 17, respectively. With our implementation, it takes 4-12
times longer to solve the model obtained by matching two

not to enable the action because it allows us to spend more moments than the model obtained by matching only a single

time in sy where the reward rate is highest. The performance
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moment.
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Figure 4: Policy value, as a percentage of the optimal value, obtained using
different solution techniques for a variation of “the Foreman’s Dilemma” with
the failure time distributiorz beingU (5, ) (left) andW (1.6x,4.5) (right).

Discussion

The generalized semi-Markov decision process is a natu-
ral model for stochastic systems with asynchronous events
and actions. The main contribution of this paper has been
a general technique for approximating a GSMDP with an
MDP by the use of phase-type distributions. We have shown
that the approximation technique is useful not only for solv-
ing GSMDPs, but also for generating policies for SMDPs.

Phases allow us to take into account the time spent in a state

when selecting actions, which can result in better policies
than by using standard SMDP techniques. In addition, the
approximation technique is not tied to any specific solution
technique for MDPs. This makes the approach very general
and allows one to easily take advantage of novel MDP so-
lution techniques when solving GSMDP, including approxi-
mate solution methods.
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