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Abstract

We introduce the generalized semi-Markov decision pro-
cess (GSMDP) as an extension of continuous-time MDPs
and semi-Markov decision processes (SMDPs) for modeling
stochastic decision processes with asynchronous events and
actions. Using phase-type distributions and uniformization,
we show how an arbitrary GSMDP can be approximated by
a discrete-time MDP, which can then be solved using exist-
ing MDP techniques. The techniques we present can also be
seen as an alternative approach for solving SMDPs, and we
demonstrate that the introduction of phases allows us to gen-
erate higher quality policies than those obtained by standard
SMDP solution techniques.

Introduction
We are interested in modeling and solving stochastic deci-
sion processes with asynchronous events and actions, where
the delay from when an event or action is enabled until it
triggers can be governed by an arbitrary positive distribu-
tion. While each of the aspects of stochastic decision pro-
cesses listed above have been individually addressed in re-
search on decision theoretic planning, no existing approach
deals with all aspects simultaneously.

Guestrin, Koller, & Parr(2002) show how factored MDPs
can be used to handle concurrent actions, but only for sets
of actions executed in synchrony. Continuous-time MDPs
(Howard 1960) can be used to model asynchronous sys-
tems, but are restricted to events and actions with expo-
nential delay distributions. Semi-Markov decision processes
(SMDPs) (Howard 1971) lift the restriction on delay distri-
butions, but cannot model asynchrony.

We therefore introduce thegeneralizedsemi-Markov de-
cision process (GSMDP), based on the GSMP model of
discrete event systems (Glynn 1989), as a model for asyn-
chronous stochastic decision processes. A GSMDP, unlike
an SMDP, can remember if an event enabled in the current
state has been continuously enabled in previous states with-
out triggering. This is key in modeling asynchronous pro-
cesses, which typically involve events that race to trigger
first in a state, but the event that triggers first does not neces-
sarily disable the competing events. For example, if we boil
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water for tea while simultaneously toasting bread, the fact
that the bread pops out of the toaster first does not mean that
we have to start over with the tea. Intuitively, a GSMDP can
be viewed as the composition of asynchronous SMDPs.

In order to solve a GSMDP, we propose an approxima-
tion scheme that transforms an arbitrary GSMDP into a
continuous-time MDP. Each non-exponential delay distribu-
tion in the GSMDP is approximated by a continuousphase-
type distribution(Neuts 1981). This yields a continuous-
time MDP, which in turn can be transformed into a discrete-
time MDP using a technique calleduniformization(Jensen
1953). Consequently, by using our proposed approxima-
tion scheme, we can approximately solve any GSMDP us-
ing standard MDP solution techniques. We will show
that phase-type distributions are a practical tool for solving
GSMDPs and SMDPs, and that our approach can produce
policies of higher quality for SMDPs than standard tech-
niques, because the introduction of phases indirectly allows
us to take into account the time spent in a state.

Generalized Semi-Markov Decision Processes
The generalized semi-Markov process (GSMP), first intro-
duced byMatthes(1962), is an established formalism in
queuing theory for modeling continuous-time stochastic dis-
crete event systems (Glynn 1989). We add a decision di-
mension to the formalism by distinguishing a subset of the
events as controllable and adding rewards, thereby obtaining
the generalized semi-Markovdecisionprocess (GSMDP).

A Model of Stochastic Discrete Event Systems

Consider a computer that can be in one of two states labeled
up and¬up. Imagine an event,crash, that can cause a tran-
sition at a random point in time from theup state to the¬up
state, with the delay being governed by some positive dis-
tribution G. For example, ifG is the uniform distribution
U(0, 1), then the time a computer remains up before crash-
ing is uniformly distributed in the interval(0, 1). A system
consisting of a single such computer can be modeled as a
semi-Markov process. Figure1(a)shows the state transition
diagrams for two identical processes modeling two comput-
ers running asynchronously.

Now, assume the two computers are connected to each
other in a network. If we view the network as a single
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stochastic process, we get the state transition diagram in Fig-
ure 1(b). Note that for continuous delay distributions, the
probability is zero that two events trigger at exactly the same
time, so there is no direct transition from stateup1 ∧ up2 to
state¬up1 ∧ ¬up2. The resulting process is, in general, no
longer a semi-Markov process. To see why, consider the
scenario in which all events have aU(0, 1) delay distribu-
tion and after0.2 time units thecrash1 event triggers in state
up1 ∧ up2, causing a transition to state¬up1 ∧ up2. Note
that crash2, which is enabled in the new state, has already
been enabled for0.2 time units, as it was enabled in the pre-
vious state without triggering. Consequently, the delay dis-
tribution for up2 is notU(0, 1) at this point, butU(0, 0.8).
In general, the delay distribution of an event at a particu-
lar point in time can depend on the entire execution history,
and this history dependence cannot be captured by a semi-
Markov process without augmenting the state space. How-
ever, the composite process is, without modifications to the
state space, ageneralizedsemi-Markov process (GSMP).

A GSMP consists of a set of statesS and a set of eventsE.
At any point in time, the process occupies a states ∈ S in
which a subsetEs of the events are enabled. With each event
e is associated a distributionGe, governing the time until
e triggers if it remains enabled, and a next-state probability
distributionpe(s′|s). The enabled events race to trigger first,
and the event that triggers causes a transition to a states′ ∈
S according to the next-state probability distribution for the
triggering event. A GSMP is equivalent to a continuous-time
Markov chain if all delay distributions are exponential.

To formally define the semantics of a GSMP, we asso-
ciate a real-valued clockce with each event that indicates
the time remaining untile is scheduled to occur. The pro-
cess starts in some initial states with eventsEs enabled.
For each enabled evente ∈ Es, we sample a trigger time
according to the distributionGe and setce to the sampled
value. Lete∗ be the event inEs with the smallest clock
value, i.e.e∗ = arg mine∈Es

ce. The evente∗ becomes the
triggering event ins. Whene∗ triggers afterce∗ time units
in s, we sample a next states′ according tope∗(s′|s) and
update each clockce for e ∈ Es′ as follows:c′e = ce − ce∗

if e ∈ Es \ {e∗}, otherwisec′e is sampled fromGe. In other
words, events that remain enabled without triggering are not
rescheduled ins′, while the triggering event and newly en-
abled events are. The specified procedure is repeated with
s = s′ andce = c′e so long asEs 6= ∅.

Before we discuss actions, policies, and rewards for
GSMDPs, we need to introduce the concept of anexecution
path. An execution pathσ for a GSMP is a sequence

σ = s0
t0,e0−→ s1

t1,e1−→ s2
t2,e2−→ . . .

with si ∈ S, ei ∈ Esi , andti > 0 being the sojourn time in
statesi before eventei triggers a transition to statesi+1. An
execution path is finite if a statesi along the path is absorb-
ing (i.e.Esi = ∅), in which case we setti = ∞ (ei is un-
defined). The length of an execution path equals the number
of state transitions along the path, which can be infinite. An
execution path for a GSMP up to statesi contains sufficient
information to characterize the future execution behavior of
the process.

Actions, Policies, and Rewards
Given a GSMP with event setE, we identify a setA ⊂
E of controllable events, oractions. The remaining events
are calledexogenous events. Actions differ from exogenous
events in that they can be disabled at will in a state, while
an exogenous evente always remains enabled in a states if
e ∈ Es. For a given states, a policy π picks the action in
the set of potentially enabled actionsA∩Es to be enabled in
s, or a special actiona∞ representing idleness and meaning
that only exogenous events should be enabled ins. We allow
the action choice to depend not only on the current state, but
on the entire execution history up to the current choice point
including the time spent in the current state. Thus, a policy
is a mapping from partial execution paths and non-negative
real numbers to actions.

In addition to actions, we need rewards to fully specify
a GSMDP. We assume a traditional reward structure with a
lump sum rewardk(s, e, s′) associated with the transition
from states to s′ caused by the triggering of evente, and a
continuous reward ratec(s, a) associated with actiona being
enabled ins. Since policies can switch actions at arbitrary
time points, reward rates can vary over time in a given state.

For a fixed policyπ, we define the discounted value of an
execution pathσ of lengthn (possibly infinite) by

vπ
α(σ) ≡

n∑
i=0

e−αTi

(
e−αtik(si, ei, si+1)

+
∫ ti

0

e−αtc(si, π(σ≤i, t))dt
)

,

whereT0 = 0 andTi =
∑i−1

j=0 tj for i > 0, andσ≤i is the
prefix of σ up to and including statesi. The parameterα is
thediscount rate, and can be interpreted as the rate of a ter-
mination event with exponential delay distribution (Howard
1960). We now define the expected infinite-horizon dis-
counted reward forπ, given that execution starts in states
at time0, by

vπ
α(s) ≡ Eπ

s [vπ
α(σ)]. (1)

Here,Eπ
s [·] denotes the expectation with respect to the prob-

ability measure induced by policyπ over the set of execu-
tion paths starting in states. The objective is to find a policy
π maximizing the expectation in (1). We propose to do so
by first approximating the GSMDP with a continuous-time
MDP using phase-type distributions.

Continuous Phase-Type Distributions
The memoryless property of the exponential distribution
plays a key role in the analytical tractability of continuous-
time Markov chains and MDPs.Erlang(1917) was the first
to consider a generalization of the exponential distribution
that preserves much of its analytic tractability. The Erlang
distribution introducesn sequentialphases, with the time
spent in phasei being exponentially distributed with rateλ.
A stochastic process with Erlang distributed sojourn times is
Markovian if phase is included in state descriptions.

The Erlang distribution is a special case of the class of
continuousphase-type distributions(Neuts 1981). A ran-
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Figure 1: State transition diagrams for stochastic processes modeling a network of computers. The rightmost diagram includes
additional states to record the phase of the events. The first digit represents the phase ofcrash1 and the second digit the phase
of crash2. A dash (“–”) means that the event associated with the phase is disabled in the state.

dom variable associated with a continuous phase-type distri-
bution of ordern represents the time to absorption in ann-
state Markov chain and has the cumulative distribution func-
tion 1−αααeTTTteee, where then-dimensional row vectorααα is the
initial distribution of the Markov chain,TTT is its n × n in-
finitesimal generator matrix, andeee is ann-dimensional col-
umn vector of ones.

There exist numerous techniques for approximating a
general distributionG with a continuous phase-type dis-
tribution PH . The most straightforward technique is the
method of moments, where the objective is to findααα andTTT
such that the firstk moments ofG andPH match. Theith
moment of a distributionG is defined asµi ≡ E[Xi], where
X is a random variable with distributionG. Two useful con-
cepts are themeanof a distribution (µ1) and thecoefficient
of variation (cv2 ≡ µ2/µ2

1 − 1). Note thatcv2 = 1 for the
exponential distribution.

When using the method of moments, it is desirable to
match as many moments ofG as possible, but we will typ-
ically need more phases to match more moments. More
phases means a larger state space, so there is a tradeoff be-
tween accuracy and complexity of the approximate model.

We can match a single moment using an exponential dis-
tribution with rate1/µ1 but this typically yields a poor ap-
proximation ofG. A better approximation is obtained by
matching the second moment as well. ForG with cv2 ≥
1/2, this can be accomplished by using a two-phase Cox-
ian distribution (Figure2(a)) with parametersλ1 = 2/µ1,
λ2 = 1/(µ1 ·cv2), andp = 1/(2·cv2) (Marie 1980). For ex-
ample, a Weibull distributionW (1, 1/2) with scale parame-
ter1 and shape parameter1/2 (µ1 = 2 andcv2 = 5) can be
approximated by a two-phase Coxian distribution (λ1 = 1,
λ2 = 1/10, andp = 1/10). If W (1, 1/2) is the delay dis-
tribution for bothcrash1 and crash2 in Figure 1(b), then
Figure1(c) is the Markov chain approximating the original
GSMP obtained by approximating each delay distribution
with a phase-type distribution.

If cv2 < 1/2, we match the first two moments by us-
ing a generalized Erlang distribution (Figure2(b)) with pa-
rametersn =

⌈
1/cv2

⌉
, p = 1 − (2n · cv2 + n − 2 −

0����
pλ1-

(1−p)λ1

�
1����

λ2-

(a)

0����
pλ-

(1−p)λ
�

1����
λ- . . . λ- n−1����

λ-

(b)

Figure 2: (a) Two-phase Coxian distribution; (b)n-phase
generalized Erlang distribution.

√
n2 + 4− 4n · cv2)/(2(n−1)(cv2+1)), andλ = (1−p+

np)/µ1 (Sauer & Chandy 1975; Marie 1980). For example,
a uniform distributionU(0, 1) (µ1 = 1/2 andcv2 = 1/3)
can be approximated by a three-phase generalized Erlang
distribution withp = 1 andλ = 6.

More recently,Osogami & Harchol-Balter(2003) have
presented a closed-form solution for matching the first three
moments of any positive distribution using an Erlang distri-
bution followed by a two-phase Coxian distribution. Later
in this paper, we compare the quality of policies obtained
by matching one, two, and three moments of each non-
exponential distribution in a model. Better policies are gen-
erally obtained by increasing the number of matching mo-
ments, but at the cost of larger state spaces.

Solution Method
To solve a GSMDP, we first convert it into a discrete-time
MDP, which can be solved using standard techniques such
as value iteration. The resulting policy is then translated into
a policy for the GSMDP.

From GSMDP to Discrete-Time MDP
We note that if all events of a GSMDP are Markovian (i.e.
have exponential delay distribution) then the GSMDP is
simply a continuous-time MDP. By using phase-type distri-
butions, we can replace each non-Markovian event in the
GSMDP with one or more Markovian events, thereby ob-
taining a continuous-time MDP that approximates the orig-
inal GSMDP. The continuous-time MDP can be turned into
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Figure 3: From GSMDP to discrete-time MDP.

a discrete-time MDP using uniformization, described be-
low. The complete process of transforming a GSMDP into a
discrete-time MDP, detailed below, is outlined in Figure3.

We assume a factored representation of the state space
with state variablesV , and associate an enabling condition
φe with each evente ∈ E such thats |= φe iff e ∈ Es

for all s ∈ S. We also assume thatpe(s′|s) is implicitly
represented by an effect formulaeffe for eache ∈ E, for
example using the effect formalism described byRintanen
(2003). Thus, a GSMDP evente is represented by a triple
〈φe, Ge, effe〉.

For each non-Markovian evente with delay distribution
Ge, we find a phase-type distribution of orderne approxi-
matingGe. We add a phase variablese to V for each event
e with ne > 1 and replacee with one or more Markovian
events. For example, if we match two moments, we get a
phase-type distribution defined in terms ofne, pe, λe

1, and
λe

2 (λe
2 = λe

1 if ne > 2). If ne > 2 we add the event
〈φe ∧ se ∈ [1, n − 2],Exp(λ1), se ← se + 1〉. The fol-
lowing events are added for all values ofne:

〈φe ∧ se = 0,Exp(peλ
e
1), se ← 1〉

〈φe ∧ se = 0,Exp((1− pe)λe
1), effe ∧ se ← 0〉

〈φe ∧ se = ne − 1,Exp(λe
2), effe ∧ se ← 0〉

We associate the transition rewardk(s, e, s′) with the last
two events and zero transition reward with the other events,
which represent pure phase transitions.

An evente = 〈φe,Exp(λe), effe〉 by itself represents a
continuous-time Markov chain having an infinitesimal gen-
erator matrixQe with elements

qij =

{ 0 if i 6|= φe

pe(j|i)λe if i |= φe andi 6= j
−(1− pe(i|i))λe if i |= φe andi = j

,

wherepe(s′|s) is the next-state probability distribution in-
duced byeffe. A set of asynchronous eventsE represents a
continuous-time Markov chain withQE =

∑
e∈E Qe, and

we call
∑

e∈E λe theexit rateof E.
Let E′ be the set of events obtained from the original set

of eventsE for the GSMDP through the translation pro-
cess described above, and letE′

e ⊂ E′ be the events de-
rived from the original GSMDP evente. The setA′ =
{e′ ∈ E′

e|e ∈ A} represents all Markovian events associ-
ated with GSMDP actions. We compute infinitesimal gen-
erator matricesQ∞ =

∑
e∈E′\A′ Qe for the idle actiona∞

andQa = Q∞ +
∑

e∈E′
a
Qe for each actiona ∈ A, and

we define the exit rateλa of an action as the sum of exit

rates for the events factored intoQa. The matricesQ∞ and
Qa for eacha ∈ A, together with the expected transition
rewardsk(s, a, s′) =

∑
e∈(E′\A′)∪E′

a
k(s, e, s′)λe/λa and

reward ratesc(s, a) (reward rates are independent of phase
and remain unmodified), constitute a continuous-time MDP
with action spaceA ∪ {a∞} and state spaceS′ defined by
the state variablesV and phase variablesse for each non-
Markovian GSMDP evente ∈ E.

The obtained continuous-time MDP approximates the
original GSMDP, and can be solved by first transforming
it into a discrete-time MDP usinguniformization. This tech-
nique, introduced byJensen(1953) as a technique for ana-
lyzing continuous-time Markov chains and implicitly used
by Howard (1960) for solving continuous-time MDPs, al-
lows us to use regular solution methods for discrete-time
MDPs, such as value iteration, to solve continuous-time
MDPs. Puterman(1994) gives an excellent description of
the uniformization process, to which we refer the reader
for details. In brief, we choose a uniformization constant
q ≥ maxa∈A∪{a∞},i∈S′ −qa

ii. We derive transition prob-
ability matricesPa = I + Qa/q for the discrete-time
MDP, whereI is the identity matrix of the same dimen-
sion asQa. The expected discounted reward between de-
cision epochs for the discrete-time MDP becomesr(s, a) =∑

s′∈S′ pa(s′|s)k(s, a, s′)+c(s, a)/(α+λa), wherepa(s′|s)
is an entry inPa andλa is the exit rate fora as defined above.
Finally, we derive a discount factorγ = q/(q + α).

Policy Execution

The execution history of a GSMDP can be represented by
a set of real-valued variables, one for each evente ∈ E
representing the timee has been continuously enabled with-
out triggering. The phases we introduce when approximat-
ing a GSMDP with a continuous-time MDP can be thought
of as a randomized discretization of the time events have
remained enabled. For example, approximatingG with an
n-phase Erlang distribution with parametersp andλ repre-
sents a discretization of the timeG has been enabled into
n random-length intervals. The length of each interval is a
random variable with distributionExp(λ). A policy for the
continuous-time MDP with phase transitions is therefore ap-
proximately a mapping from states and the times events have
been enabled to actions for the original GSMDP.

Phase transitions are not part of the original model, so we
have to simulate them when executing the policy obtained
for the approximate model. When a GSMDP event or ac-
tion e becomes enabled during execution, we sample a first
phase transition timet1 for the phase-type distribution used
to approximateGe. If e remains enabled fort1 time units
without triggering, we increment the phase associated with
e and sample a second phase transition timet2. This contin-
ues untile triggers or is disabled, in which case the phase is
reset to zero, or we reach the last phase, in which case the
phase does not change untile triggers or is disabled. The
action choice can change every time a simulated phase tran-
sition occurs, although phase transitions do not change the
actual state of the process. This allows us to take the time
we have spent in a state into account when selecting which
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action to enable. We will see in the next section that this
will permit us to obtain better policies than if we switched
the enabled action only at actual state transitions.

Empirical Evaluation
We have implemented a basic GSMDP planner based on
the transformation procedure outlined in Figure3. Our
implementation uses multi-terminal BDDs (MTBDDs, also
known as ADDs) (Fujita, McGeer, & Yang 1997) to repre-
sent matrices and vectors. The discrete-time MDPs that re-
sult from the transformation are solved using value iteration,
essentially using the same approach asHoeyet al. (1999).

Our first test case is a variation of Howard’s “the Fore-
man’s Dilemma” (Howard 1960), where we have a machine
that can be working (s0), failed (s1), or serviced (s2). A
failure event with delay distributionG is enabled ins0 and
causes a transition tos1. Once ins1, the repair time for the
machine has distributionExp(1/100). The foreman can at
any time ins0 choose to enable a service action with de-
lay distributionExp(10). If this action triggers before the
failure event, the system enterss2 where the machine is be-
ing serviced with service time distributionExp(1). Given
reward ratesc(s0) = 1, c(s1) = 0, andc(s2) = 1/2, in-
dependent of action choice, and no transition rewards, the
problem is to produce a service policy that maximizes ex-
pected infinite-horizon discounted reward ins0.

We can model this problem as an SMDP, noting that the
probability of the service action triggering before the failure
event isp02 = 1 −

∫∞
t0

10e−10(t−t0)F (t)dt (whereF (t) is
the cumulative distribution function forG) if we enable the
service action aftert0 time units ins0. We can solve the
SMDP using the techniques described byHoward (1971),
but then we can choose to enable the action ins0 only im-
mediately (t0 = 0) or not at all (t0 = ∞). Alternatively,
we can express the expected reward ins0 as a function oft0
and use numerical solution techniques to find the value for
t0 that maximizes the expected reward. Depending on the
shape ofF (t), both of these approaches may require numer-
ical integration over semi-infinite intervals.

Figure4 plots the expected reward as a percentage of the
optimal expected reward for policies obtained using stan-
dard SMDP solution techniques as well as our proposed
technique for approximating a (G)SMDP with an MDP us-
ing phase-type distributions. The optimal value and the
value for the SMDP solution were computed using MAT-
LAB, while the other values were computed by simulating
execution of the policy generated by our GSMDP planner
and taking the average value over 5000 samples. We used
α = − log 0.95 as the discount factor. The two graphs
are for different choices of the failure time distributionG
(U(5, x) for left graph andW (1.6x, 4.5) for right).

We can see that the SMDP solution is well below the opti-
mal solution because it has to enable the action either imme-
diately, or not at all, ins0. For small values ofx, the optimal
SMDP policy is to enable the action ins0, but asx increases
so does the expected failure time, so for largerx it is better
not to enable the action because it allows us to spend more
time ins0 where the reward rate is highest. The performance

of the policy obtained by matching a single moment ofG is
almost identical to that of the SMDP solution. This policy is
also restricted to either enabling the action immediately or
nor at all ins0. Due to the approximation ofG, the perfor-
mance is slightly worse around the point where the optimal
SMDP policy changes. We can see that by increasing the
number of moments that are matched, we can increase the
quality of the policy. Note the number of phases varies with
x for U(5, x), but is constant forW (1.6x, 4.5), which ex-
plains why the curves in the right graph are smoother than
in the left. The only exception is for lower values ofx in
the right graph. In this case, the phase-type distribution we
obtain underestimates the probability that failure occurs at
a very early stage, so the enabling of the action comes later
than needed to perform well. In general, however, matching
more moments gives us better policies, mainly because the
phases that are introduced allow us to take into account the
fact thatG is not memoryless, and so delay the enabling of
the action ins0 accordingly.

Our second test case is a system administration problem
based on the computer network system introduced earlier in
this paper (cf.Guestrin, Koller, & Parr2002). To make it a
decision problem, we add a reboot action for each machine
mi, which can be enabled ifmi is not up. The reward rate
for a state is equal to the number of machines that are up.
The delay distributions for the reboot actions are all set to
U(0, 1), while Exp(1 ) was chosen for the crash events.

Figure5 plots the expected discounted value of the pol-
icy (α = − log 0.95) obtained by our GSMDP planner
when matching between one and three moments of non-
exponential delay distributions. We see that by matching
two or three moments, we can obtain a policy that performs
noticeably better than the policy obtain by matching only a
single moment. By matching a single moment, we can select
to enable a reboot action based only on which machines are
currently not up, and the resulting policy rebootsmi before
mj if i < j. In contrast, the policy obtained when match-
ing two or three moments keeps a reboot action enabled if it
is in a phase other than zero, because it is then expected to
trigger soon. While the first test case illustrated that phases
can result in better policies by delaying the enabling of an
action in a state, this test case illustrates that phases can help
by keeping an action enabled if it has already been enabled
for some time.

By matching more moments, we increase the accuracy of
the approximation, but we also increase the state space. In
terms of planning time, a larger state space means a solution
will take longer to obtain. Matching more moments typi-
cally also results in a larger uniformization constant, which
translates to a slower convergence for value iteration. Thus,
as one can expect, better policies are obtained at the price of
longer solution times. For the system administration domain
with n machines,|S| is2n, (n+1)2n, and(1.5n+1)2n when
matching one, two, and three moments, respectively. The
uniformization constant isn + 1, n + 5, and approximately
n+17, respectively. With our implementation, it takes 4–12
times longer to solve the model obtained by matching two
moments than the model obtained by matching only a single
moment.
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Figure 4: Policy value, as a percentage of the optimal value, obtained using
different solution techniques for a variation of “the Foreman’s Dilemma” with
the failure time distributionG beingU(5, x) (left) andW (1.6x, 4.5) (right).
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Figure 5: Expected discounted reward
for the system administration problem
with n machines using phase-type dis-
tributions.

Discussion
The generalized semi-Markov decision process is a natu-
ral model for stochastic systems with asynchronous events
and actions. The main contribution of this paper has been
a general technique for approximating a GSMDP with an
MDP by the use of phase-type distributions. We have shown
that the approximation technique is useful not only for solv-
ing GSMDPs, but also for generating policies for SMDPs.
Phases allow us to take into account the time spent in a state
when selecting actions, which can result in better policies
than by using standard SMDP techniques. In addition, the
approximation technique is not tied to any specific solution
technique for MDPs. This makes the approach very general
and allows one to easily take advantage of novel MDP so-
lution techniques when solving GSMDP, including approxi-
mate solution methods.
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