Goal

- Provide shared benchmarks and evaluation metrics for the MDP and probabilistic planning communities
Domain Model Restrictions

- Discrete time
- Finite state space
- Full observability
Outline

- Input language
- Competition problems
- Plan representation
- Planner evaluation
Input Language

- PDDL 2.1 level 1 + probabilistic effects
- Rewards encoded using fluents
 - No numeric preconditions!
Stochastic Actions

- Variation of factored probabilistic STRIPS operators [Dearden & Boutilier 97]
- An action consists of a precondition ϕ and a consequence set $C = \{c_1, \ldots, c_n\}$
- Each c_i has a trigger condition ϕ_i and an effects list $E_i = \langle p_1^i, E_1^i; \ldots; p_k^i, E_k^i \rangle$
 - $\sum_j p_j = 1$ for each E_i
Stochastic Actions: Semantics

- An action is enabled in a state s if its precondition ϕ holds in s.
- Executing a disabled action should be allowed, but does not change the state.
 - Different from deterministic PDDL
 - Motivation: partial observability
 - Precondition becomes factored trigger condition
When applying an enabled action to s:

- Select an effect set for each consequence with enabled trigger condition
- The combined effects of the selected effect sets are applied *atomically* to s
- Unique next state if consequences with mutually consistent trigger conditions have *commutative* effect sets
Syntax of Probabilistic Effects

\[
\text{<effect>} \quad ::= \quad \text{<d-effect>}
\]

\[
\text{<effect>} \quad ::= \quad \text{(and <effect>*)}
\]

\[
\text{<effect>} \quad ::= \quad \text{(forall (<typed list(variable)>)) <effect>)}
\]

\[
\text{<effect>} \quad ::= \quad \text{(when <GD> <d-effect>)}
\]

\[
\text{<d-effect>} \quad ::= \quad \text{(probabilistic <prob-eff>+)}
\]

\[
\text{<d-effect>} \quad ::= \quad \text{<a-effect>}
\]

\[
\text{<prob-eff>} \quad ::= \quad \text{<probability> <a-effect>}
\]

\[
\text{<a-effect>} \quad ::= \quad \text{(and <p-effect>*)}
\]

\[
\text{<a-effect>} \quad ::= \quad \text{<p-effect>}
\]

\[
\text{<p-effect>} \quad ::= \quad \text{(not <atomic formula(term)>)}
\]

\[
\text{<p-effect>} \quad ::= \quad \text{<atomic formula(term)>}
\]

\[
\text{<p-effect>} \quad ::= \quad \text{(<assign-op> <f-head> <f-exp>)}
\]

\[
\text{<probability>} \quad ::= \quad \text{Any rational number in the interval [0, 1]}
\]
Correspondence to Components of Stochastic Actions

- Effects list:
 \[(\text{probabilistic } p_1^i E_1^i \ldots p_k^i E_k^i)\]

- Consequence:
 \[(\text{when } \phi (\text{probabilistic } p_1^i E_1^i \ldots p_k^i E_k^i))\]
Stochastic Actions: Example

(:action stack
 :parameters (?x ?y)
 :precondition (and (holding ?x) (clear ?y))
 :effect (and (not (holding ?x)) (clear ?x) (handempty)
 (probabilistic 0.95 (and (not (clear ?y)) (on ?x ?y))
 0.05 (ontable ?x))))
Rewards and Goals

- Rewards encoded using fluents
 - :effect (increase (reward) 100)
 - (:metric maximize (reward))

- Meaning of goals
 - (:goal φ) means maximize probability of achieving φ
Competition Problems

- Goal directed problems
 - Fuzzy blocks world and logistics domains
- Reward directed problems
 - Classical MDP type problems
(define (domain tiger-domain)
 (:requirements :negative-preconditions :conditional-effects :probabilistic-effects :rewards)
 (:predicates (tiger-on-left) (hear-tiger-on-left))
 (:action listen
 :effect (and (when (tiger-on-left)
 (probabilistic 0.85 (hear-tiger-on-left)
 0.15 (not (hear-tiger-on-left))))
 (when (not (tiger-on-left))
 (probabilistic 0.85 (not (hear-tiger-on-left))
 0.15 (hear-tiger-on-left))))
 (:action open-left-door
 :effect (and (when (not (tiger-on-left)) (increase (reward) 100))
 (when (tiger-on-left) (decrease (reward) 100))))
 (:action open-right-door
 :effect (and (when (tiger-on-left) (increase (reward) 100))
 (when (not (tiger-on-left)) (decrease (reward) 100)))))
(define (problem tiger-problem)
 (:domain tiger-domain)
 (:init (probabilistic 0.5 (tiger-on-left)))
 (:metric maximize (reward)))
Plan Representation

- No explicit plan representation
 - Up to each individual planner
- Planner communicates with evaluator
 - Evaluator sends state updates to planner
 - Planner sends actions choices to evaluator

Distinction between planner and executor blurred
Planner Evaluation

- Sampling-based planner evaluation
 - Simulate execution for some time and accumulate reward
 - Take average accumulated reward over multiple sample executions
- Three speed categories (preliminary)
 - Real-time, intermediate, deliberative
 - Variation in time allowed per sample
Evaluation Issues

- How many samples?
- How much time per sample?
- Require replanning for each sample, or allot initial computation time?
Possible Subtracks

- Non-deterministic planning
 - Treat probabilistic effects as disjunctive effects
- Learning
 - Generalize from smaller problem instances
Resources

- **On the web:**

 http://www.cs.rutgers.edu/~mlittman/topics/ipc04-pt.html

- **Mailing lists [mlittman@cs.rutgers.edu]:**
 - probplan-panel (discussion the design of the competition)
 - probplan-announce (general announcements)